• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • NCERT Solutions
  • RD Sharma Solutions
    • RD Sharma Class 12 Solutions
    • RD Sharma Class 11 Solutions
    • RD Sharma Class 10 Solutions
    • RD Sharma Class 9 Solutions
    • RD Sharma Class 8 Solutions
  • RS Aggarwal Solutions
    • RS Aggarwal Solutions Class 10
    • RS Aggarwal Solutions Class 9
    • RS Aggarwal Solutions Class 8
    • RS Aggarwal Solutions Class 7
    • RS Aggarwal Solutions Class 6
  • CBSE Sample Papers
  • ML Aggarwal Solutions

Learn Insta

RD Sharma Solutions , RS Aggarwal Solutions and NCERT Solutions

  • Concise Mathematics Class 10 ICSE Solutions 2018
  • NCERT Solutions
  • Extra Questions
  • MCQ Questions
  • CBSE Notes

MCQ Questions for Class 11 Maths Chapter 3 Trigonometric Functions with Answers

November 16, 2020 by Prasanna Leave a Comment

Check the below NCERT MCQ Questions for Class 11 Maths Chapter 3 Trigonometric Functions with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have provided Trigonometric Functions Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.

Trigonometric Functions Class 11 MCQs Questions with Answers

Question 1.
The value of cos² x + cos² y – 2cos x × cos y × cos (x + y) is
(a) sin (x + y)
(b) sin² (x + y)
(c) sin³ (x + y)
(d) sin4 (x + y)

Answer

Answer: (b) sin² (x + y)
Hint:
cos² x + cos² y – 2cos x × cos y × cos(x + y)
{since cos(x + y) = cos x × cos y – sin x × sin y }
= cos² x + cos² y – 2cos x × cos y × (cos x × cos y – sin x × sin y)
= cos² x + cos² y – 2cos² x × cos² y + 2cos x × cos y × sin x × sin y
= cos² x + cos² y – cos² x × cos² y – cos² x × cos² y + 2cos x × cos y × sin x × sin y
= (cos² x – cos² x × cos² y) + (cos² y – cos² x × cos² y) + 2cos x × cos y × sin x × sin y
= cos² x(1- cos² y) + cos² y(1 – cos² x) + 2cos x × cos y × sin x × sin y
= sin² y × cos² x + sin² x × cos² y + 2cos x × cos y × sin x × sin y (since sin² x + cos² x = 1 )
= sin² x × cos² y + sin² y × cos² x + 2cos x × cos y × sin x × sin y
= (sin x × cos y)² + (sin y × cos x)² + 2cos x × cos y × sin x × sin y
= (sin x × cos y + sin y × cos x)²
= {sin (x + y)}²
= sin² (x + y)


Question 2.
If a×cos x + b × cos x = c, then the value of (a × sin x – b²cos x)² is
(a) a² + b² + c²
(b) a² – b² – c²
(c) a² – b² + c²
(d) a² + b² – c²

Answer

Answer: (d) a² + b² – c²
Hint:
We have
(a×cos x + b × sin x)² + (a × sin x – b × cos x)² = a² + b²
⇒ c² + (a × sin x – b × cos x)² = a² + b²
⇒ (a × sin x – b × cos x)² = a² + b² – c²


Question 3.
If cos a + 2cos b + cos c = 2 then a, b, c are in
(a) 2b = a + c
(b) b² = a × c
(c) a = b = c
(d) None of these

Answer

Answer: (a) 2b = a + c
Hint:
Given, cos A + 2 cos B + cos C = 2
⇒ cos A + cos C = 2(1 – cos B)
⇒ 2 cos((A + C)/2) × cos((A-C)/2 = 4 sin²(B/2)
⇒ 2 sin(B/2)cos((A-C)/2) = 4sin² (B/2)
⇒ cos((A-C)/2) = 2sin (B/2)
⇒ cos((A-C)/2) = 2cos((A+C)/2)
⇒ cos((A-C)/2) – cos((A+C)/2) = cos((A+C)/2)
⇒ 2sin(A/2)sin(C/2) = sin(B/2)
⇒ 2{√(s-b)(s-c)√bc} × {√(s-a)(s-b)√ab} = √(s-a)(s-c)√ac
⇒ 2(s – b) = b
⇒ a + b + c – 2b = b
⇒ a + c – b = b
⇒ a + c = 2b


Question 4.
The value of cos 5π is
(a) 0
(b) 1
(c) -1
(d) None of these

Answer

Answer: (c) -1
Hint:
Given, cos 5π = cos (π + 4π) = cos π = -1


Question 5.
In a triangle ABC, cosec A (sin B cos C + cos B sin C) equals
(a) none of these
(b) c/a
(c) 1
(d) a/c

Answer

Answer: (c) 1
Hint:
Given cosec A (sin B cos C + cos B sin C)
= cosec A × sin(B+C)
= cosec A × sin(180 – A)
= cosec A × sin A
= cosec A × 1/cosec A
= 1


Question 6.
If the angles of a triangle be in the ratio 1 : 4 : 5, then the ratio of the greatest side to the smallest side is
(a) 4 : (√5 – 1)
(b) 5 : 4
(c) (√5 – 1) : 4
(d) none of these

Answer

Answer: (a) 4 : (√5 – 1)
Hint:
Given, the angles of a triangle be in the ratio 1 : 4 : 5
⇒ x + 4x + 5x = 180
⇒ 10x = 180
⇒ x = 180/10
⇒ x = 18
So, the angle are: 18, 72, 90
Since a : b : c = sin A : sin B : sin C
⇒ a : b : c = sin 18 : sin 72 : sin 90
⇒ a : b : c = (√5 – 1)/4 : {√(10 + 2√5)}/4 : 1
⇒ a : b : c = (√5 – 1) : {√(10 + 2√5)} : 4
Now, c /a = 4/(√5 – 1)
⇒ c : a = 4 : (√5 – 1)


Question 7.
The value of cos 180° is
(a) 0
(b) 1
(c) -1
(d) infinite

Answer

Answer: (c) -1
Hint:
180 is a standard degree generally we all know their values but if we want to go theoretically then
cos(90 + x) = – sin(x)
So, cos 180 = cos(90 + 90)
= -sin 90
= -1 {sin 90 = 1}
So, cos 180 = -1


Question 8.
The perimeter of a triangle ABC is 6 times the arithmetic mean of the sines of its angles. If the side b is 2, then the angle B is
(a) 30°
(b) 90°
(c) 60°
(d) 120°

Answer

Answer: (b) 90°
Hint:
Let the lengths of the sides if ∆ABC be a, b and c
Perimeter of the triangle = 2s = a + b + c = 6(sinA + sinB + sinC)/3
⇒ (sinA + sinB + sinC) = ( a + b + c)/2
⇒ (sinA + sinB + sinC)/( a + b + c) = 1/2
From sin formula,Using
sinA/a = sinB/b = sinC/c = (sinA + sinB + sinC)/(a + b + c) = 1/2
Now, sinB/b = 1/2
Given b = 2
So, sinB/2 = 1/2
⇒ sinB = 1
⇒ B = π/2


Question 9:
If 3 × tan(x – 15) = tan(x + 15), then the value of x is
(a) 30
(b) 45
(c) 60
(d) 90

Answer

Answer: (b) 45
Hint:
Given, 3×tan(x – 15) = tan(x + 15)
⇒ tan(x + 15)/tan(x – 15) = 3/1
⇒ {tan(x + 15) + tan(x – 15)}/{tan(x + 15) – tan(x – 15)} = (3 + 1)/(3 – 1)
⇒ {tan(x + 15) + tan(x – 15)}/{tan(x + 15) – tan(x – 15)} = 4/2
⇒ {tan(x + 15) + tan(x – 15)}/{tan(x + 15) – tan(x – 15)} = 2
⇒ sin(x + 15 + x – 15)/sin(x + 15 – x + 15) = 2
⇒ sin 2x/sin 30 = 2
⇒ sin 2x/(1/2) = 2
⇒ 2 × sin 2x = 2
⇒ sin 2x = 1
⇒ sin 2x = sin 90
⇒ 2x = 90
⇒ x = 45


Question 10.
If the sides of a triangle are 13, 7, 8 the greatest angle of the triangle is
(a) π/3
(b) π/2
(c) 2π/3
(d) 3π/2

Answer

Answer: (c) 2π/3
Hint:
Given, the sides of a triangle are 13, 7, 8
Since greatest side has greatest angle,
Now Cos A = (b² + c² – a²)/2bc
⇒ Cos A = (7² + 8² – 13²)/(2×7×8)
⇒ Cos A = (49 + 64 – 169)/(2×7×8)
⇒ Cos A = (113 – 169)/(2×7×8)
⇒ Cos A = -56/(2×56)
⇒ Cos A = -1/2
⇒ Cos A = Cos 2π/3
⇒ A = 2π/3
So, the greatest angle is
= 2π/3


Question 11.
The value of tan 20 × tan 40 × tan 80 is
(a) tan 30
(b) tan 60
(c) 2 tan 30
(d) 2 tan 60

Answer

Answer: (b) tan 60
Hint:
Given, tan 20 × tan 40 × tan 80
= tan 40 × tan 80 × tan 20
= [{sin 40 × sin 80}/{cos 40 × cos 80}] × (sin 20/cos 20)
= [{2 * sin 40 × sin 80}/{2 × cos 40 × cos 80}] × (sin 20/cos 20)
= [{cos 40 – cos 120}/{cos 120 + cos 40}] × (sin 20/cos 20)
= [{cos 40 – cos (90 + 30)}/{cos (90 + 30) + cos 40}] × (sin 20/cos 20)
= [{cos 40 + sin30}/{-sin30 + cos 40}] × (sin 20/cos 20)
= [{(2 × cos 40 + 1)/2}/{(-1 + cos 40)/2}] × (sin 20/cos 20)
= [{2 × cos 40 + 1}/{-1 + cos 40}] × (sin 20/cos 20)
= [{2 × cos 40 × sin 20 + sin 20}/{-cos 20 + cos 40 × cos 20}]
= (sin 60 – sin 20 + sin 20)/(-cos 20 + cos 60 + cos 20)
= sin 60/cos 60
= tan 60
So, tan 20 × tan 40 × tan 80 = tan 60


Question 12.
If the angles of a triangle be in the ratio 1 : 4 : 5, then the ratio of the greatest side to the smallest side is
(a) 4 : (√5 – 1)
(b) 5 : 4
(c) (√5 – 1) : 4
(d) none of these

Answer

Answer: (a) 4 : (√5 – 1)
Hint:
Given, the angles of a triangle be in the ratio 1 : 4 : 5
⇒ x + 4x + 5x = 180
⇒ 10x = 180
⇒ x = 180/10
⇒ x = 18
So, the angle are: 18, 72, 90
Since a : b : c = sin A : sin B : sin C
⇒ a : b : c = sin 18 : sin 72 : sin 90
⇒ a : b : c = (√5 – 1)/4 : {√(10 + 2√5)}/4 : 1
⇒ a : b : c = (√5 – 1) : {√(10 + 2√5)} : 4
Now, c /a = 4/(√5 – 1)
⇒ c : a = 4 : (√5 – 1)


Question 13.
The general solution of √3 cos x – sin x = 1 is
(a) x = n × π + (-1)n × (π/6)
(b) x = π/3 – n × π + (-1)n × (π/6)
(c) x = π/3 + n × π + (-1)n × (π/6)
(d) x = π/3 – n × π + (π/6)

Answer

Answer: (c) x = π/3 + n × π + (-1)n × (π/6)
Hint:
√3 cos x-sin x=1
⇒ (√3/2)cos x – (1/2)sin x = 1/2
⇒ sin 60 × cos x – cos 60 × sin x = 1/2
⇒ sin (x – 60) = 1/2
⇒ sin (x – π/3) = sin 30
⇒ sin (x – π/3) = sinπ/6
⇒ x – π/3 = n × π + (-1)n × (π/6) {where n ∈ Z}
⇒ x = π/3 + n × π + (-1)n × (π/6)


Question 14.
If tan² θ = 1 – e², then the value of sec θ + tan³ θ × cosec θ is
(a) 2 – e²
(b) (2 – e²)1/2
(c) (2 – e²)²
(d) (2 – e²)3/2

Answer

Answer: (d) (2 – e²)3/2
Hint:
Given, tan² θ = 1 – e²
⇒ tan θ = √(1 – e²)
MCQ Questions for Class 11 Maths Chapter 3 Trigonometric Functions with Answers 1
From the figure and Pythagorus theorem,
AC² = AB² + BC²
⇒ AC² = {√(1 – e²)}² + 12
⇒ AC² = 1 – e² + 1
⇒ AC² = 2 – e²
⇒ AC = √(2 – e²)
Now, sec θ = √(2 – e²)
cosec θ = √(2 – e²)/√(1 – e²)
and tan θ = √(1 – e²)
Given, sec θ + tan³ θ × cosec θ
= √(2 – e²) + {(1 – e²)3/2 × √(2 – e²)/√(1 – e²)}
= √(2 – e²) + {(1 – e²) × (1 – e²) × √(2 – e²)/√(1 – e²)}
= √(2 – e²) + (1 – e²) × √(2 – e²)
= √(2 – e²) × (1 + 1 – e²)
= √(2 – e²) × (2 – e²)
= (2 – e²)3/2
So, sec θ + tan³ θ × cosec θ = (2 – e²)3/2


Question 15.
The value of cos 20 + 2sin² 55 – √2 sin65 is
(a) 0
(b) 1
(c) -1
(d) None of these

Answer

Answer: (b) 1
Hint:
Given, cos 20 + 2sin² 55 – √2 sin65
= cos 20 + 1 – cos 110 – √2 sin65 {since cos 2x = 1 – 2sin² x}
= 1 + cos 20 – cos 110 – √2 sin65
= 1 – 2 × sin {(20 + 110)/2 × sin{(20 – 110)/2} – √2 sin65 {Apply cos C – cos D formula}
= 1 – 2 × sin 65 × sin (-45) – √2 sin65
= 1 + 2 × sin 65 × sin 45 – √2 sin65
= 1 + (2 × sin 65)/√2 – √2 sin65
= 1 + √2 ( sin 65 – √2 sin 65
= 1
So, cos 20 + 2sin² 55 – √2 sin65 = 1


Question 16.
If the radius of the circumcircle of an isosceles triangle PQR is equal to PQ ( = PR), then the angle P is
(a) 2π/3
(b) π/3
(c) π/2
(d) π/6

Answer

Answer: (a) 2π/3
Hint:
Let S be the center of the circumcircle of triangle PQR.
So, SP = SQ = SR = PQ = PR, where SP, SQ & SR are radii.
Thus SPQ & SPR are equilateral triangles.
⇒ ∠QSP = 60°;
Similarly ∠RQP = 60°
⇒ Angle at the center QSP = 120°
So, SRPQ is a rhombus, since all the four sides are equal.
Hence, its opposite angles are equal; so ∠P = ∠QSP = 120°


Question 17.
If cos a + 2cos b + cos c = 2 then a, b, c are in
(a) 2b = a + c
(b) b² = a × c
(c) a = b = c
(d) None of these

Answer

Answer: (a) 2b = a + c
Hint:
Given, cos A + 2 cos B + cos C = 2
⇒ cos A + cos C = 2(1 – cos B)
⇒ 2 cos((A + C)/2) × cos((A-C)/2 = 4 sin² (B/2)
⇒ 2 sin(B/2)cos((A-C)/2) = 4sin² (B/2)
⇒ cos((A-C)/2) = 2sin (B/2)
⇒ cos((A-C)/2) = 2cos((A+C)/2)
⇒ cos((A-C)/2) – cos((A+C)/2) = cos((A+C)/2)
⇒ 2sin(A/2)sin(C/2) = sin(B/2)
⇒ 2{√(s-b)(s-c)√bc} × {√(s-a)(s-b)√ab} = √(s-a)(s-c)√ac
⇒ 2(s – b) = b
⇒ a + b + c – 2b = b
⇒ a + c – b = b
⇒ a + c = 2b


Question 18.
The value of 4 × sin x × sin(x + π/3) × sin(x + 2π/3) is
(a) sin x
(b) sin 2x
(c) sin 3x
(d) sin 4x

Answer

Answer: (c) sin 3x
Hint:
Given, 4 × sin x × sin(x + π/3) × sin(x + 2π/3)
= 4 × sin x × {sin x × cos π/3 + cos x × sin π/3} × {sin x × cos 2π/3 + cos x × sin 2π/3}
= 4 × sin x × {(sin x)/2 + (√3 × cos x)/2} × {-(sin x)/2 + (√3 × cos x)/2}
= 4 × sin x × {-(sin 2x)/4 + (3 × cos 2x)/4}
= sin x × {-sin 2x + 3 × cos 2x}
= sin x × {-sin 2x + 3 × (1 – sin 2x)}
= sin x × {-sin 2x + 3 – 3 × sin 2x}
= sin x × {3 – 4 × sin 2x}
= 3 × sin x – 4 sin 3x
= sin 3x
So, 4 × sin x × sin(x + π/3) × sin(x + 2π/3) = sin 3x


Question 19.
If tan A – tan B = x and cot B – cot A = y, then the value of cot (A – B) is
(a) x + y
(b) 1/x + y
(c) x + 1/y
(d) 1/x + 1/y

Answer

Answer: (d) 1/x + 1/y
Hint:
Given,
tan A – tan B = x ……………. 1
and cot B – cot A = y ……………. 2
From equation,
1/cot A – 1/cot B = x
⇒ (cot B – cot A)/(cot A × cot B) = x
⇒ y/(cot A × cot B) = x {from equation 2}
⇒ y = x × (cot A × cot B)
⇒ cot A × cot B = y/x
Now, cot (A – B) = (cot A × cot B + 1)/(cot B – cot A)
⇒ cot (A – B) = (y/x + 1)/y
⇒ cot (A – B) = (y/x) × (1/y) + 1/y
⇒ cot (A – B) = 1/x + 1/y


Question 20.
The value of (sin 7x + sin 5x) /(cos 7x + cos 5x) + (sin 9x + sin 3x) / (cos 9x + cos 3x) is
(a) tan 6x
(b) 2 tan 6x
(c) 3 tan 6x
(d) 4 tan 6x

Answer

Answer: (b) 2 tan 6x
Hint:
Given, (sin 7x + sin 5x) /(cos 7x + cos 5x) + (sin 9x + sin 3x) / (cos 9x + cos 3x)
⇒ [{2 × sin(7x+5x)/2 × cos(7x-5x)/2}/{2 × cos(7x+5x)/2 × cos(7x-5x)/2}] + [{2 × sin(9x+3x)/2 × cos(9x-3x)/2}/{2 × cos(9x+3x)/2 × cos(9x-3x)/2}]
⇒ [{2 × sin 6x × cosx}/{2 × cos 6x × cosx}] + [{2 × sin 6x × cosx}/{2 × cos 6x × cosx}]
⇒ (sin 6x/cos 6x) + (sin 6x/cos 6x)
⇒ tan 6x + tan 6x
⇒ 2 tan 6x


We hope the given NCERT MCQ Questions for Class 11 Maths Chapter 3 Trigonometric Functions with Answers Pdf free download will help you. If you have any queries regarding CBSE Class 11 Maths Trigonometric Functions MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

Filed Under: MCQ Questions

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

  • Maths NCERT Solutions
  • Science NCERT Solutions
  • Social Science NCERT Solutions
  • English NCERT Solutions
  • Hindi NCERT Solutions
  • Physics NCERT Solutions
  • Chemistry NCERT Solutions
  • Biology NCERT Solutions
RS Aggarwal Solutions RD Sharma Solutions
RS Aggarwal Class 10 RD Sharma Class 10
RS Aggarwal Class 9 RD Sharma Class 9
RS Aggarwal Class 8 RD Sharma Class 8
RS Aggarwal Class 7 RD Sharma Class 11
RS Aggarwal Class 6 RD Sharma Class 12

Recent Posts

  • CBSE Important Extra Questions for Class 12 Economics Chapter Wise
  • MCQ Questions for Class 12 Geography Chapter 5 Primary Activities with Answers
  • MCQ Questions for Class 12 Geography Chapter 4 Human Development with Answers
  • MCQ Questions for Class 12 Geography Chapter 3 Population Composition with Answers
  • MCQ Questions for Class 12 Geography Chapter 2 The World Population: Distribution, Density and Growth with Answers
  • Geography Class 12 Important Questions Chapter 7 Mineral and Energy Resources
  • Class 12 History Important Questions Chapter 13 Mahatma Gandhi and the Nationalist Movement: Civil Disobedience and Beyond
  • MCQ Questions for Class 12 Geography Chapter 1 Human Geography: Nature and Scope with Answers
  • Geography Class 12 Important Questions Chapter 6 Water Resources
  • MCQ Questions for Class 12 History Chapter 15 Framing the Constitution: The Beginning of a New Era with Answers
DMCA.com Protection Status

Footer

NCERT Solutions for Class 12
NCERT Solutions for Class 11
NCERT Solutions for Class 10
NCERT Solutions for Class 9
NCERT Solutions for Class 8
NCERT Solutions for Class 7
NCERT Solutions for Class 6
ML Aggarwal Class 10 ICSE Solutions
Concise Mathematics Class 10 ICSE Solutions
RS Aggarwal Solutions
RD Sharma Solutions
ML Aggarwal Solutions
CBSE Sample Papers
English Summaries
English Grammar
Like us on Facebook Follow us on Twitter
Watch Youtube Videos Follow us on Google Plus
Follow us on Pinterest Follow us on Tumblr
Percentage Calculator

Copyright © 2021 Learn Insta