Check the below NCERT MCQ Questions for Class 12 Maths Chapter 4 Determinants with Answers Pdf free download. MCQ Questions for Class 12 Maths with Answers were prepared based on the latest exam pattern. We have provided Determinants Class 12 Maths MCQs Questions with Answers to help students understand the concept very well.
Determinants Class 12 MCQs Questions with Answers
Question 1.
\(\left[\begin{array}{ccc}
1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right]\)
(a) (x – y) (y + z)(z + x)
(b) (x + y) (y – z)(z – x)
(c) (x – y) (y – z)(z + x)
(d) (x – y) (y – z) (z – x)
Answer
Answer: (d) (x – y) (y – z) (z – x)
Question 2.
The value of the determinant
\(\left[\begin{array}{ccc}
3 & 1 & 7 \\
5 & 0 & 2 \\
2 & 5 & 3
\end{array}\right]\)
(a) 124
(b) 125
(c) 134
(d) 144
Answer
Answer: (c) 134
Question 3.
If a, b, c are in A.P. then the determinant
\(\left[\begin{array}{ccc}
x+2 & x+3 & x+2a \\
x+3 & x+4 & x+2b \\
x+4 & x+5 & x+2c
\end{array}\right]\)
(a) 1
(b) x
(c) 0
(d) 2x
Answer
Answer: (c) 0
Question 4.
If w is a non-real root of the equation x² – 1 = 0. then
\(\left[\begin{array}{ccc}
1 & ω & ω^{2} \\
ω & ω^{2} & 1 \\
ω^{2} & 1 & ω
\end{array}\right]\) =
(a) 0
(b) 1
(c) ω
(d) ω²
Answer
Answer: (a) 0
Question 5.
If Δ = \(\left[\begin{array}{cc}
10 & 2 \\
30 & 6
\end{array}\right]\) then A =
(a) 0
(b) 10
(c) 12
(d) 60
Answer
Answer: (a) 0
Question 6.
If 7 and 2 are two roots of the equation \(\left[\begin{array}{ccc}
x & 3 & 7 \\
2 & x & 2 \\
7 & 6 & x
\end{array}\right]\) then the third root is
(a) -9
(b) 14
(c) \(\frac{1}{2}\)
(d) None of these
Answer
Answer: (a) -9
Question 7.
If \(\left[\begin{array}{cc}
x & 2 \\
18 & x
\end{array}\right]\) = \(\left[\begin{array}{cc}
6 & 2 \\
18 & 6
\end{array}\right]\) x is equal to
(a) 6
(b) ±6
(c) -1
(d) -6
Answer
Answer: (b) ±6
Question 8.
\(\left[\begin{array}{ccc}
1 & a & a^{2}-bc \\
1 & b & b^{2}-ca \\
1 & c & c^{2}-ab
\end{array}\right]\) is equal to
(a) abc
(b) ab + bc + ca
(c) 0
(d) (a – b)(b – c)(c – a)
Answer
Answer: (c) 0
Question 9.
A = \(\left[\begin{array}{ll}
\alpha & q \\
q & \alpha
\end{array}\right]\) |A³| = 125 then α =
(a) ±3
(b) ±2
(c) ±5
(d) 0
Answer
Answer: (a) ±3
Question 10.
If a ≠ 0 and \(\left[\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+a & 1 \\
1 & 1 & 1+a
\end{array}\right]\) = 0 then a =
(a) a = -3
(b) a = 0
(c) a = 1
(d) a = 3
Answer
Answer: (a) a = -3
Question 11.
If x > 0 and x ≠ 1. y > 0. and y ≠ 1, z > 0 and z ≠ 1 then
\(\left[\begin{array}{ccc}
1 & log_{x}y & log_{x}z \\
log_{y}x & 1 & log_{y}z \\
log_{z}x & log_{z}y & 1
\end{array}\right]\) is equal to
(a) 1
(b) -1
(c) 0
(d) None of these
Answer
Answer: (c) 0
Question 12.
\(\left[\begin{array}{ccc}
y+z & z & x \\
y & z+x & y \\
z & z & x+y
\end{array}\right]\) is equal to
(a) 6xyz
(b) xyz
(c) 4xyz
(d) xy + yz + zx
Answer
Answer: (c) 4xyz
Question 13.
If \(\left[\begin{array}{cc}
2 & 4 \\
5 & 1
\end{array}\right]\) = \(\left[\begin{array}{cc}
2x & 4 \\
6 & x
\end{array}\right]\) then the value of x is
(a) ±2
(b) ±\(\frac{1}{3}\)
(c) ±√3
(d) ± (0.5)
Answer
Answer: (c) ±√3
Question 14.
If \(\left[\begin{array}{cc}
2x & 5 \\
8 & x
\end{array}\right]\) = \(\left[\begin{array}{cc}
6 & -2 \\
7 & 3
\end{array}\right]\) then the value of x is
(a) 3
(b) ±3
(c) ±6
(d) 6
Answer
Answer: (c) ±6
Question 15.
The value of determinant \(\left[\begin{array}{ccc}
a-b & b+c & a \\
b-c & c+a & b \\
c-a & a+b & c
\end{array}\right]\)
(a) a³ + b³ + c ³
(b) 3bc
(c) a³ + b³ + c³ – 3abc
(d) None of these
Answer
Answer: (c) a³ + b³ + c³ – 3abc
Question 16.
The area of a triangle with vertices (-3, 0) (3, 0) and (0, k) is 9 sq. units. The value of k will be
(a) 9
(b) 3
(c) -9
(d) 6
Answer
Answer: (b) 3
Question 17.
The determinant \(\left[\begin{array}{ccc}
b^{2}-ab & b-c & bc-ac \\
ab-a^{2} & a-b & b^{2}-ab \\
bc-ac & c-a & ab-a^{2}
\end{array}\right]\) equals
(a) abc(b – c)(c -a)(a – b)
(b) (b – c)(c – a)(a – b)
(c) (a + b + c)(b – c)(c – a)(a – b)
(d) None of these
Answer
Answer: (d) None of these
Question 18.
The number of distinct real roots of \(\left[\begin{array}{ccc}
sin x & cos x & cos x \\
cos x & sin x & cos x \\
cos x & cos x & sin x
\end{array}\right]\) = 0 in the interval –\(\frac{π}{4}\) ≤ x ≤ \(\frac{π}{4}\) is
(a) 0
(b) 2
(c) 1
(d) 3
Answer
Answer: (c) 1
Question 19.
If A, B and C are angles of a triangle, then the determinant
\(\left[\begin{array}{ccc}
-1 & cos C & cos B \\
cos C & -1 & cos A \\
cos B & cos A & -1
\end{array}\right]\)
(a) 0
(b) -1
(c) 1
(d) None of these
Answer
Answer: (a) 0
Question 20.
Let f(t) = \(\left[\begin{array}{ccc}
cot t & t & 1 \\
2 sin t & t & 2t \\
sin t & t & t
\end{array}\right]\) then \(_{t→0}^{lim}\) \(\frac{f(t)}{t^2}\) is equal to
(a) 0
(b) -1
(c) 2
(d) 3
Answer
Answer: (a) 0
Question 21.
The maximum value of \(\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1+sin θ & 1 \\
1+cos θ & 1 & 1
\end{array}\right]\) is (θ is real number)
(a) \(\frac{1}{2}\)
(b) \(\frac{√3}{2}\)
(c) \(\frac{2√3}{4}\)
(d) √2
Answer
Answer: (a) \(\frac{1}{2}\)
Question 22.
If f(x) = \(\left[\begin{array}{ccc}
0 & x-a & x-b \\
x+a & 0 & x-c \\
x+b & x+c & 0
\end{array}\right]\) then
(a) f(a) = 0
(b) f(b) = 0
(c) f(0) = 0
(d) f(1) = 0
Answer
Answer: (c) f(0) = 0
Question 23.
If A = \(\left[\begin{array}{ccc}
2 & \lambda & -3 \\
0 & 2 & 5 \\
1 & 1 & 3
\end{array}\right]\) then A-1 exists if
(a) λ = 2
(b) λ ≠ 2
(c) λ ≠ -2
(d) None of these
Answer
Answer: (d) None of these
Question 24.
If A and B are invertible matrices, then which of the following is not correct?
(a) adj A = |A|.A-1
(b) det (a)-1 = [det (a)]-1
(c) (AB)-1 = B-1A-1
(d) (A + B)-1 = B-1 + A-1
Answer
Answer: (d) (A + B)-1 = B-1 + A-1
Question 25.
If x, y, z are all different from zero and
\(\left[\begin{array}{ccc}
1+x & 1 & 1 \\
1 & 1+y & 1 \\
1 & 1 & 1+z
\end{array}\right]\) = 0, then value of x-1 + y-1 + z-1 is
(a) xyz
(b) x-1y-1z-1
(c) -x – y – z
(d) -1
Answer
Answer: (d) -1
Question 26.
The value of the determinant \(\left[\begin{array}{ccc}
x & x+y & x+2y \\
x+2y & x & x+y \\
x+y & x+2y & x
\end{array}\right]\) is
(a) 9x² (x + y)
(b) 9y² (x + y)
(c) 3y² (x + y)
(d) 7x² (x + y)
Answer
Answer: (b) 9y² (x + y)
Question 27.
There are two values of a which makes determinant
Δ = \(\left[\begin{array}{ccc}
1 & -2 & 5 \\
2 & a & -1 \\
0 & 4 & 2a
\end{array}\right]\) = 86, then sum of these number is
(a) 4
(b) 5
(c) -4
(d) 9
Answer
Answer: (c) -4
Question 28.
Evaluate the determinant Δ = \(\left|\begin{array}{cc}
log_{3}512 & log_{4}3 \\
log_{3}8 & log_{4}9
\end{array}\right|\)
(a) \(\frac{15}{2}\)
(b) 12
(c) \(\frac{14}{3}\)
(d) 6
Answer
Answer: (a) \(\frac{15}{2}\)
Question 29.
\(\left|\begin{array}{cc}
x & -7 \\
x & 5 x+1
\end{array}\right|\)
(a) 3x² + 4
(b) x(5x + 8)
(c) 3x + 4x²
(d) x(3x + 4)
Answer
Answer: (b) x(5x + 8)
Question 30.
\( \left|\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \alpha
\end{array}\right|\)
(a) 0
(b) 1
(c) 2
(d) 3
Answer
Answer: (b) 1
Question 31.
\( \left|\begin{array}{ll}
\cos 15^{\circ} & \sin 15^{\circ} \\
\sin 75^{\circ} & \cos 75^{\circ}
\end{array}\right|\)
(a) 0
(b) 5
(c) 3
(d) 7
Answer
Answer: (a) 0
Question 32.
\(\left|\begin{array}{cc}
a+i b & c+i d \\
-c+i d & a-i b
\end{array}\right|\)
(a) (a + b)²
(b) (a + b + c + d)²
(c) (a² + b² – c² – d²)
(d) a² + b² + c² + a²
Answer
Answer: (d) a² + b² + c² + a²
Question 33.
If \(\left|\begin{array}{lll}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|\) = \(k\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|\) then k =
(a) 0
(b) 1
(c) 2
(d) 3
Answer
Answer: (c) 2
Question 34.
If \(\left|\begin{array}{ccc}
a-b-c & 2 a & 2 a \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|\) = k (a + b + c)³ then k is
(a) 0
(b) 1
(c) 2
(d) 3
Answer
Answer: (b) 1
Question 35.
\(\left|\begin{array}{lll}
a+1 & a+2 & a+4 \\
a+3 & a+5 & a+8 \\
a+7 & a+10 & a+14
\end{array}\right|\) =
(a) 2
(b) -2
(c) 4
(d) -4
Answer
Answer: (b) -2
Question 36.
If abc ≠ 0 and \(\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|\) = 0 then \(\frac{1}{a}\) + \(\frac{1}{b}\) + \(\frac{1}{c}\) =
(a) 1
(b) 2
(c) -1
(d) -3
Answer
Answer: (c) -1
Question 37.
\(\left|\begin{array}{ccc}
2 x y & x^{2} & y^{2} \\
x^{2} & y^{2} & 2 x y \\
y^{2} & 2 x y & x^{2}
\end{array}\right|\) =
(a) (x³ + y³)²
(b) (x² + y²)³
(c) -(x² + y²)³
(d) -(x³ + y³)²
Answer
Answer: (d) -(x³ + y³)²
Question 38.
\(\left|\begin{array}{ccc}
b^{2} c^{2} & b c & b+c \\
c^{2} a^{2} & c a & c+a \\
a^{2} b^{2} & a b & a+b
\end{array}\right|\) =
(a) a7 + b7 + c7
(b) (a + b + c)7
(c) (a² + b² + c²) (a5 + b5 + c5)
(d) 0
Answer
Answer: (d) 0
Question 39.
If a, b, c are cube roots of unity, then
\(\left|\begin{array}{lll}
e^{a} & e^{2 a} & e^{3 a}-1 \\
e^{b} & e^{2 b} & e^{3 b}-1 \\
e^{c} & e^{2 c} & e^{3 c}-1
\end{array}\right|\) =
(a) 0
(b) e
(c) e²
(d) e³
Answer
Answer: (a) 0
Question 40.
The value of
\(\left|\begin{array}{ccc}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) & \cos 2 \beta \\
\sin \alpha & \cos \alpha & \sin \beta \\
-\cos \alpha & \sin \alpha & \cos \beta
\end{array}\right|\)
is independent of
(a) α
(b) β
(c) α.β
(d) None of these
Answer
Answer: (a) α
Question 41.
If x is a complex root of the equation
\(\left|\begin{array}{lll}
1 & x & x \\
x & 1 & x \\
x & x & 1
\end{array}\right|\) + \(\left|\begin{array}{ccc}
1-x & 1 & 1 \\
1 & 1-x & 1 \\
1 & 1 & 1-x
\end{array}\right|\) = 0
then x2007 + x-2007 =
(a) 1
(b) -1
(c) -2
(d) 2
Answer
Answer: (c) -2
Question 42.
\(\left|\begin{array}{lll}
b-c & c-a & a-b \\
c-a & a-b & b-c \\
a-b & b-c & c-a
\end{array}\right|\) =
(a) 0
(b) 1
(c) 2
(d) 3
Answer
Answer: (a) 0
Question 43.
Let Δ = \(\left|\begin{array}{ccc}
x & y & z \\
x^{2} & y^{2} & z^{2} \\
x^{3} & y^{3} & z^{3}
\end{array}\right|\) then the value of Δ is
(a) (x – y) (y- z)(z – x)
(b) xyz
(c) x² + y² + z²)²
(d) xyz (x – y)(y – z) (z – x)
Answer
Answer: (d) xyz (x – y)(y – z) (z – x)
Question 44.
The value of the determinant \(\left|\begin{array}{ccc}
\alpha & \beta & \gamma \\
\alpha^{2} & \beta^{2} & \gamma^{2} \\
\beta+\gamma & \gamma+\alpha & \alpha+\beta
\end{array}\right|\)
(a) (α + β)(β + γ)(γ + α)
(b) (α – β)(β – γ) (γ – α) (α + β + γ)
(c) (α + β + γ)² (α – β – γ)²
(d) αβγ (α + β + γ)
Answer
Answer: (b) (α – β)(β – γ) (γ – α) (α + β + γ)
We hope the given NCERT MCQ Questions for Class 12 Maths Chapter 4 Determinants with Answers Pdf free download will help you. If you have any queries regarding Determinants CBSE Class 12 Maths MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.